![]() 鋁製品及其製備方法
专利摘要:
本發明提供一種鋁製品,包括鋁基體及形成於該鋁基體上的複合鍍層,該複合鍍層包括一Ni-Cu-P合金層及一Ni-P合金層,該Ni-Cu-P合金層位於Ni-P合金層與基體之間,該Ni-Cu-P合金層具有納米晶態結構,該Ni-P合金層具有非晶態結構,該Ni-Cu-P合金層與該Ni-P合金層藉由化學鍍方法形成。該鋁製品同時具有優異的電磁屏蔽效能和耐腐蝕雙重性能。本發明還提供一種上述鋁製品的製備方法。 公开号:TW201323659A 申请号:TW100146072 申请日:2011-12-13 公开日:2013-06-16 发明作者:Da-Hua Cao 申请人:Fih Hong Kong Ltd; IPC主号:C23C18-00
专利说明:
鋁製品及其製備方法 本發明涉及一種鋁製品及其處理方法,尤其涉及一種具有較好電磁屏蔽功能及防腐功能的鋁製品及其製備方法。 鋁合金具有品質輕、散熱性能好、導電性好等優點,因此廣泛應用在電子、通訊產品的內外構件上。在空氣中鋁合金表面會形成氧化鋁保護膜,在一般的大氣環境下,鋁合金表面的氧化鋁膜能夠有效地對鋁合金基體進行保護,但在含有電解質的濕氣中,例如海洋表面大氣環境,鋁合金表面容易出現點蝕,這樣會降低產品的電磁屏蔽性能並影響產品的通信性能,同時導致產品使用壽命縮短。 有鑒於此,本發明提供一種具有較好的電磁屏蔽功能及防腐功能的鋁製品。 另外,本發明還提供一種上述鋁製品的製備方法。 一種鋁製品,包括鋁基體及形成於該鋁基體上的複合鍍層,該複合鍍層包括一Ni-Cu-P合金層及一Ni-P合金層,該Ni-Cu-P合金層位於Ni-P合金層與基體之間,該Ni-Cu-P合金層具有納米晶態結構,該Ni-P合金層具有非晶態結構,該Ni-Cu-P合金層與該Ni-P合金層藉由化學鍍方法形成。 一種鋁製品的製備方法,包括以下步驟: 在鋁基材上化學鍍一Ni-Cu-P合金層,化學鍍該Ni-Cu-P合金層的鍍液為含以下組分的水溶液:20-25g/L NiSO4·6H2O,2.0-2.5g/L CuSO4·5H2O,20-25g/L NaH2PO2·H2O,20-30g/L乳酸,20-25g/L檸檬酸鈉,30-40g/L焦磷酸鈉,0.1g/L十二烷基硫酸鈉,該鍍液的pH值範圍為8.5-10.5,溫度為83℃-87℃; 在Ni-Cu-P合金層上化學鍍一Ni-P合金層,化學鍍該Ni-P合金層的鍍液為含以下組分的水溶液:20-25g/L NiSO4·6H2O,25-30g/L NaH2PO2·H2O,25-35g/L乳酸,15-20g/L檸檬酸鈉,0.1g/L十二烷基硫酸鈉,該鍍液的pH值範圍為4.5-5.5,溫度為81℃-85℃。 上述鋁製品10表面採用Ni-Cu-P合金層131與Ni-P合金層133形成的複合鍍層13具有如下優越性: 1、利用Ni-Cu-P合金層131中的高含量Cu的特性,具有良好的導電性,同時,Ni具有良好的磁性,使得Ni-Cu-P合金層131既具有良好的導電性有具有良好的導磁性,因此具有良好的電磁屏蔽效能。 2、電磁屏蔽效能SE=A+R+B,其中 A為:在屏蔽體內部傳輸時,電磁能量被吸收引起的吸收損耗A,這種吸收要求膜層具有導電性及導磁性; R為:電磁波通過屏蔽體表面時,由於阻抗突變引起的反射損耗; B為:兩個介面間多次反射而需要考慮的修正係數。 該複合鍍層為Ni-Cu-P層/Ni-P層這種雙層結構,因為Ni-Cu-P合金層中包括高含量的導電性優良的Cu及導磁性良好的Ni,因此能使電磁波產生較大吸收損耗A。另外,由於Ni-Cu-P合金層與Ni-P合金層係兩種阻抗不一樣的膜層,電磁波在Ni-Cu-P合金層與Ni-P合金層之間就會因為阻抗突變而引起反射損耗(R+B)。故,該複合鍍層的Ni-Cu-P層/Ni-P層的雙層結構使得該複合鍍層具有吸收電磁波A的同時,還具有阻抗突變引起的反射損耗(R+B),因此可以進一步提高電磁屏蔽的效果。 3、利用非晶結構的Ni-P合金層的優異的耐腐蝕性能及耐磨性能,使該鋁製品具有優異的表面耐腐蝕性能及耐磨性能。 上述鋁製品的製備方法中,化學鍍該Ni-Cu-P合金層採用鹼性化學鍍液(pH值範圍為8.5-10.5),在鹼性鍍液環境中有利於獲得納米晶的Ni-Cu-P合金層。一般來說,鹼性化學鍍液不穩定,容易分解,故上述化學鍍該Ni-Cu-P合金層採用多種絡合劑,尤其係為了防止鍍液分解,使用了強絡合劑焦磷酸鈉,可以保證在鹼性化學鍍的過程中鍍液的穩定性。另外,化學鍍該Ni-Cu-P合金層的鍍液中CuSO4·5H2O的使用量達到2.0-2.5g/L,使鍍層中銅含量達到60-75%,具有良好的導電性。 請參閱圖1,本發明較佳實施例的鋁製品10包括鋁鋁基體11、形成於鋁基體11上的複合鍍層13。 鋁基體11可以為鋁或鋁合金。 該複合鍍層13包括一Ni-Cu-P合金層131及一Ni-P合金層133。該Ni-Cu-P合金層131位於Ni-P合金層133與鋁基體11之間。該Ni-Cu-P合金層131具有納米晶態結構。該Ni-Cu-P合金層131中銅的品質百分含量為60%-75%,Ni的品質百分含量為23%-37%,P的品質百分含量為1%-3%。Ni-Cu-P合金層131的厚度可為7.5μm-8.5μm。該Ni-P合金層133具有非晶態結構。Ni-P合金層133中Ni的品質百分含量為88%-93%,P的品質百分含量為7%-12%。Ni-P合金層133的厚度可以為9μm-11μm。 該Ni-Cu-P合金層131與該Ni-P合金層133藉由化學鍍膜方法形成。 請參閱圖2,在其他實施例中,為了使該複合鍍層13能夠更好的附著於鋁基體11上,該鋁製品10還可以在複合鍍層13與鋁基體11之間形成一化學鍍鎳層12。 上述鋁製品10表面採用Ni-Cu-P合金層131與Ni-P合金層133形成的複合鍍層13具有如下優越性: 1、利用納米Ni-Cu-P合金層131中的高含量Cu的特性,具有良好的導電性,同時,Ni具有良好的磁性,使得Ni-Cu-P合金層131既具有良好的導電性有具有良好的導磁性,因此具有良好的電磁屏蔽效能。 2、電磁屏蔽效能SE=A+R+B,其中 A為:在屏蔽體內部傳輸時,電磁能量被吸收引起的吸收損耗A,這種吸收要求膜層具有導電性及導磁性; R為:電磁波通過屏蔽體表面時,由於阻抗突變引起的反射損耗; B為:兩個介面間多次反射而需要考慮的修正係數。 該複合鍍層13為Ni-Cu-P層/Ni-P層這種雙層結構,因為Ni-Cu-P合金層131中包括高含量的導電性優良的Cu及導磁性良好的Ni,因此能使電磁波產生較大吸收損耗A。另外,由於Ni-Cu-P合金層131與Ni-P合金層133係兩種阻抗不一樣的膜層,電磁波在Ni-Cu-P合金層131與Ni-P合金層133之間就會因為阻抗突變而引起反射損耗(R+B)。故,該複合鍍層13的Ni-Cu-P層/Ni-P層的雙層結構使得該複合鍍層13具有吸收電磁波A的同時,還具有阻抗突變引起的反射損耗(R+B),因此可以進一步提高電磁屏蔽的效果。 3、利用非晶結構的Ni-P合金層133的優異的耐腐蝕性能及耐磨性能,使該鋁製品10具有優異的表面耐腐蝕性能及耐磨性能。 該鋁製品10的製備方法,主要包括採用化學鍍方法在鋁基體11上依次沉積該Ni-Cu-P合金層131及Ni-P合金層133。 化學鍍該Ni-Cu-P合金層131採用的鍍液為含以下組分的水溶液:NiSO4·6H2O,20-25g/L;CuSO4·5H2O,2.0-2.5g/L;NaH2PO2·H2O,20-25g/L;乳酸,20-30g/L;檸檬酸鈉,20-25g/L;焦磷酸鈉(Na4P2O7),30-40g/L;十二烷基硫酸鈉,0.1g/L。其中,該乳酸、檸檬酸鈉、焦磷酸鈉、十二烷基硫酸鈉均用作絡合劑。該鍍液的pH值範圍為8.5-10.5,優選為8.8-9.0可以,可採用氨水調節。該鍍液的溫度為83℃-87℃。上述條件下製備的Ni-Cu-P合金層131具有納米晶結構。當該鍍液的pH值小於8.5時,難以獲得納米晶結構的Ni-Cu-P合金層131。 化學鍍該Ni-P合金層133採用的鍍液為含以下組分的水溶液:NiSO4·6H2O,20-25g/L;NaH2PO2·H2O,25-30g/L;乳酸,25-35g/L;檸檬酸鈉,15-20g/L;十二烷基硫酸鈉,0.1g/L。該鍍液的pH值範圍為4.5-5.5,可採用NaOH溶液調節。該鍍液的溫度為81℃-85℃。 為了使該Ni-Cu-P合金層131及Ni-P合金層133能夠更好的附著於鋁基體11上,該鋁製品的製備方法還可包括在化學鍍該Ni-Cu-P合金層131之前對鋁基體11進行預鍍鎳的步驟,以在鋁基體11上形成一化學鍍鎳層12。該預鍍鎳採用的鍍液為含以下組分的水溶液:NiSO4·6H2O,0.020-0.038mol/L;檸檬酸鈉(C6H5Na3O7),0.20-0.38mol/L;酒石酸鉀鈉(NaKC4H4O6),0.02-0.038mol/L。該鍍液的pH值範圍為10-12,可採用NaOH溶液調節。該鍍液的溫度為室溫。 優選情況下,該鋁製品的製備方法還可包括化學鍍前按如下方法及順序對鋁基體11進行前處理: (a) 除油清洗:可採用常規市售鋁合金除油液。 (b) 水洗:去離子水漂洗。 (c) 第一次活化:將鋁基體11於室溫下的鹽酸與水按體積比為1:4配製的溶液中浸置6s-30s。 (d) 水洗:去離子水漂洗。 (e) 酸性浸蝕:將將鋁基體11於室溫下的硝酸與水按體積比為1:1配製的溶液中浸置3s-5s。 (f) 水洗:去離子水漂洗。 (g) 第二次活化:將鋁基體11於室溫下的10%的硫酸溶液中浸置50s-60s。 (h) 水洗:去離子水漂洗。 上述化學鍍該Ni-Cu-P合金層131採用鹼性化學鍍液(pH值範圍為8.5-10.5),在鹼性鍍液環境中有利於獲得納米晶的Ni-Cu-P合金層131。一般來說,鹼性化學鍍液不穩定,容易分解,故上述化學鍍該Ni-Cu-P合金層131採用多種絡合劑,尤其係為了防止鍍液分解,使用了強絡合劑焦磷酸鈉,可以保證在鹼性化學鍍的過程中鍍液的穩定性。另外,化學鍍該Ni-Cu-P合金層131的鍍液中CuSO4·5H2O的使用量達到2.0-2.5g/L,使鍍層中銅含量達到60-75%,得到的鍍層係銅基的納米Ni-Cu-P層。 請參閱圖3,從上述Ni-Cu-P合金層131的X射線衍射圖可以看出,Ni-Cu-P合金層131在Cu(111)、Cu(200)及Cu(220)面出現了三強峰,但衍射峰較晶態的衍射峰要寬(晶態的衍射峰幾乎為一條直線)有一定寬化,為典型的納米晶結構。請參閱圖4及圖5,從上述Ni-Cu-P合金層131的SEM表面形貌圖也可看出,在放大500X時,其表面形貌由許多顆粒組成,將其放大到5000X時,可以看出由許多大的胞狀單元組成,但每個大的胞狀單元又包含了許多納米級的細小胞狀單元,符合納米晶的形貌特徵。這種納米晶態結構的鍍層導電性及磁性都較好,因此,電磁屏蔽性能優越。 請參閱圖6,從上述化學鍍該Ni-P合金層133的X射線衍射圖可以看出,Ni-P合金層133在Ni(111)面呈現一拓寬的饅頭峰,係非晶態的典型特徵。請參閱圖7及圖8,從Ni-P合金層133的SEM表面形貌圖也可看出,其表面形貌由許多細小顆粒組成,將其放大到5000X時,可看到其由清晰的單元式的胞狀結構組成,而且非常緻密,符合非晶結構的形貌特徵。該種非晶態結構的鍍層由於沒有晶界,故,耐腐蝕性能優越。 下面藉由具體實施例對本發明進行進一步詳細說明。 實施例1 1. 按如下方法及順序對鋁合金材質的鋁基體11進行前處理: (a) 除油清洗:將鋁基體11於70℃-75℃下的含30g/L Na3PO4、25g/L Na2CO3及8g/LNa2SiO3的溶液中清洗2min。 (b) 水洗:去離子水漂洗。 (c) 第一次活化:將鋁基體11於室溫下的鹽酸與水按體積比為1:4配製的溶液中浸置10s。 (d) 水洗:去離子水漂洗。 (e) 酸性浸蝕:將將鋁基體11於室溫下的硝酸與水按體積比為1:1配製的溶液中浸置3s。 (f) 水洗:去離子水漂洗。 (g) 第二次活化:將鋁基體11於室溫下的10%的硫酸溶液中浸置50s。 (h) 水洗:去離子水漂洗。 2. 預鍍鎳:在鋁基體11鍍上化學鍍鎳層12;化學鍍鎳層12的鍍液配方為:NiSO4·6H2O,0.025mol/L;檸檬酸鈉,0.25mol/L;酒石酸鉀鈉,0.03mol/L;鍍液pH值為10,溫度為室溫。 3. 化學鍍Ni-Cu-P合金層131:化學鍍Ni-Cu-P合金層131的鍍液配方為:NiSO4·6H2O,21g/L;CuSO4·5H2O,2.2g/L;NaH2PO2·H2O,20g/L;乳酸,25g/L;檸檬酸鈉,24g/L;焦磷酸鈉(Na4P2O7),35g/L;十二烷基硫酸鈉,0.1g/L;鍍液的pH值為8.9-9.0,採用氨水調節,溫度為83℃-87℃,沉積時間為50min。鍍得Ni-Cu-P合金層131的厚度為8μm。 4. 化學鍍Ni-P合金層133:化學鍍Ni-P合金層133的鍍液配方為:NiSO4·6H2O,20g/L;NaH2PO2·H2O,25g/L;乳酸,30g/L;檸檬酸鈉,15g/L;十二烷基硫酸鈉,0.1g/L。該鍍液的pH值範圍為4.5-5.5,採用2mol/L的NaOH溶液調節。該鍍液的溫度為81℃-85℃,沉積時間為60min。鍍得Ni-P合金層133的厚度為10μm。實施例1的樣品記做S1。 實施例2 1. 按如下方法及順序對鋁合金材質的鋁基體11進行前處理: (a) 除油清洗:將鋁基體11於70℃-75℃下的含30g/L Na3PO4、25g/L Na2CO3及8g/LNa2SiO3的溶液中清洗4min。 (b) 水洗:去離子水漂洗。 (c) 第一次活化:將鋁基體11於室溫下的鹽酸與水按體積比為1:4配製的溶液中浸置10s。 (d) 水洗:去離子水漂洗。 (e) 酸性浸蝕:將將鋁基體11於室溫下的硝酸與水按體積比為1:1配製的溶液中浸置5s。 (f) 水洗:去離子水漂洗。 (g) 第二次活化:將鋁基體11於室溫下的10%的硫酸溶液中浸置60s。 (h) 水洗:去離子水漂洗。 2. 預鍍鎳:在鋁基體11鍍上化學鍍鎳層12;化學鍍鎳層12的鍍液配方為:NiSO4·6H2O,0.03mol/L;檸檬酸鈉,0.3mol/L;酒石酸鉀鈉,0.035mol/L;鍍液pH值為11,溫度為室溫。 3. 化學鍍Ni-Cu-P合金層131:化學鍍Ni-Cu-P合金層131的鍍液配方為:NiSO4·6H2O,25g/L;CuSO4·5H2O,2.4g/L;NaH2PO2·H2O,23g/L;乳酸,30g/L;檸檬酸鈉,20g/L;焦磷酸鈉(Na4P2O7),40g/L;十二烷基硫酸鈉,0.1g/L;鍍液的pH值為8.9-9.0,採用氨水調節,溫度為83℃-87℃,沉積時間為50min。鍍得Ni-Cu-P合金層131的厚度為8.2μm。 4. 化學鍍Ni-P合金層133:化學鍍Ni-P合金層133的鍍液配方為:NiSO4·6H2O,20g/L;NaH2PO2·H2O,28g/L;乳酸,30g/L;檸檬酸鈉,20g/L;十二烷基硫酸鈉,0.1g/L。該鍍液的pH值範圍為4.5-5.5,採用2mol/L的NaOH溶液調節。該鍍液的溫度為81℃-85℃,沉積時間為60min。鍍得Ni-P合金層133的厚度為9.5μm。實施例2的樣品記做S2。 實施例3 1. 按如下方法及順序對鋁合金材質的鋁基體11進行前處理: (a) 除油清洗:將鋁基體11於70℃-75℃下的含30g/L Na3PO4、25g/L Na2CO3及8g/LNa2SiO3的溶液中清洗5min。 (b) 水洗:去離子水漂洗。 (c) 第一次活化:將鋁基體11於室溫下的鹽酸與水按體積比為1:4配製的溶液中浸置15s。 (d) 水洗:去離子水漂洗。 (e) 酸性浸蝕:將將鋁基體11於室溫下的硝酸與水按體積比為1:1配製的溶液中浸置4s。 (f) 水洗:去離子水漂洗。 (g) 第二次活化:將鋁基體11於室溫下的10%的硫酸溶液中浸置55s。 (h) 水洗:去離子水漂洗。 2. 預鍍鎳:在鋁基體11鍍上化學鍍鎳層12;化學鍍鎳層12的鍍液配方為:NiSO4·6H2O,0.035mol/L;檸檬酸鈉,0.35mol/L;酒石酸鉀鈉,0.033mol/L;鍍液pH值為12,溫度為室溫。 3. 化學鍍Ni-Cu-P合金層131:化學鍍Ni-Cu-P合金層131的鍍液配方為:NiSO4·6H2O,23g/L;CuSO4·5H2O,2.3g/L;NaH2PO2·H2O,25g/L;乳酸,20g/L;檸檬酸鈉,25g/L;焦磷酸鈉(Na4P2O7),30g/L;十二烷基硫酸鈉,0.1g/L;鍍液的pH值為8.9-9.0,採用氨水調節,溫度為83℃-87℃,沉積時間為50min。鍍得Ni-Cu-P合金層131的厚度為7.8μm。 4. 化學鍍Ni-P合金層133:化學鍍Ni-P合金層133的鍍液配方為:NiSO4·6H2O,25g/L;NaH2PO2·H2O,30g/L;乳酸,35g/L;檸檬酸鈉,20g/L;十二烷基硫酸鈉,0.1g/L。該鍍液的pH值範圍為4.5-5.5,採用2mol/L的NaOH溶液調節。該鍍液的溫度為81℃-85℃,沉積時間為60min。鍍得Ni-P合金層133的厚度為10.2μm。實施例3的樣品記做S3。 電磁屏蔽效能測試 對樣品S1-S3進行電磁屏蔽效能測試,該測試採用的網路頻譜儀為Agilent公司生產,其型號為E5071C。測試表明,在100KHz~4.5GHz的頻率範圍,樣品S1-S3的電磁屏蔽效能分別為100dB、105dB、110dB。在10Hz-10KHZ的頻率範圍,樣品S1-S3的電磁屏蔽效能分別為60dB、63dB、65dB。而金屬鋁的電磁屏蔽效能在低頻時很低,尤其係工頻50HZ以下,電磁屏蔽效能幾乎為零。 耐腐蝕性測試 對樣品S1-S3進行耐腐蝕性測試。將樣品S1-S3放入5%的Nacl溶液中浸泡12天,每過4天檢查鍍層表面的腐蝕性能。 浸泡4天,樣品S1-S3表面無點蝕; 浸泡8天,樣品S1-S3表面無點蝕; 浸泡12天,樣品S1出現1個點蝕;樣品S2無點蝕,樣品S3無點蝕。 以上說明,樣品S1-S3表面的膜層具有良好的耐腐蝕性能。 上述鋁製品10表面由Ni-Cu-P合金層131及Ni-P合金層133組成的複合鍍層13結合了非晶優越的耐腐蝕性能和納米晶優異的導電性及磁性,同時,Ni-Cu-P合金層131中銅元素的加入,也提高了其導電性,從而同時具有優異的電磁屏蔽效能和耐腐蝕雙重性能。 10...鋁製品 11...鋁基體 12...化學鍍鎳層 13...複合鍍層 131...Ni-Cu-P合金層 133...Ni-P合金層 圖1係本發明一較佳實施例鋁製品的剖視圖。 圖2係本發明另一較佳實施例鋁製品的剖視圖。 圖3係本發明一較佳實施例鋁製品的Ni-Cu-P合金層的X射線衍射圖。 圖4係本發明一較佳實施例鋁製品的Ni-Cu-P合金層放大500倍的掃描電鏡圖。 圖5係本發明一較佳實施例鋁製品的Ni-Cu-P合金層放大5000倍的掃描電鏡圖。 圖6係本發明一較佳實施例鋁製品的Ni-P合金層的X射線衍射圖。 圖7係本發明一較佳實施例鋁製品的Ni-P合金層放大500倍的掃描電鏡圖。 圖8係本發明一較佳實施例鋁製品的Ni-P合金層放大5000倍的掃描電鏡圖。 10...鋁製品 11...鋁基體 13...複合鍍層 131...Ni-Cu-P合金層 133...Ni-P合金層
权利要求:
Claims (11) [1] 一種鋁製品,包括鋁基體及形成於該鋁基體上的複合鍍層,其改良在於:該複合鍍層包括一Ni-Cu-P合金層及一Ni-P合金層,該Ni-Cu-P合金層位於Ni-P合金層與基體之間,該Ni-Cu-P合金層具有納米晶態結構,該Ni-P合金層具有非晶態結構,該Ni-Cu-P合金層與該Ni-P合金層藉由化學鍍方法形成。 [2] 如申請專利範圍第1項所述之鋁製品,其中所述Ni-Cu-P合金層中銅的品質百分含量為60%-75%,Ni的品質百分含量為23%-37%,P的品質百分含量為1%-3%。 [3] 如申請專利範圍第1項所述之鋁製品,其中所述Ni-Cu-P合金層的厚度為7.5μm-8.5μm。 [4] 如申請專利範圍第1項所述之鋁製品,其中所述Ni-P合金層中Ni的品質百分含量為88%-93%,P的品質百分含量為7%-12%。 [5] 如申請專利範圍第1項所述之鋁製品,其中所述Ni-P合金層的厚度為9μm-11μm。 [6] 如申請專利範圍第1項所述之鋁製品,其中所述鋁基體為鋁或鋁合金。 [7] 如申請專利範圍第1項所述之鋁製品,其中所述鋁製品還包括一位於該鋁基體與該Ni-Cu-P合金層之間的化學鍍鎳層。 [8] 一種鋁製品的製備方法,包括以下步驟:在鋁基材上化學鍍一Ni-Cu-P合金層,化學鍍該Ni-Cu-P合金層的鍍液為含以下組分的水溶液:20-25g/L NiSO4·6H2O,2.0-2.5g/L CuSO4·5H2O,20-25g/L NaH2PO2·H2O,20-30g/L乳酸,20-25g/L檸檬酸鈉,30-40g/L焦磷酸鈉,0.1g/L十二烷基硫酸鈉,該鍍液的pH值範圍為8.5-10.5,溫度為83℃-87℃;在Ni-Cu-P合金層上化學鍍一Ni-P合金層,化學鍍該Ni-P合金層的鍍液為含以下組分的水溶液:20-25g/L NiSO4·6H2O,25-30g/L NaH2PO2·H2O,25-35g/L乳酸,15-20g/L檸檬酸鈉,0.1g/L十二烷基硫酸鈉,該鍍液的pH值範圍為4.5-5.5,溫度為81℃-85℃。 [9] 如申請專利範圍第8項所述之鋁製品的製備方法,其中化學鍍該Ni-Cu-P合金層的鍍液的pH值範圍為8.8-9.0。 [10] 如申請專利範圍第8項所述之鋁製品的製備方法,其中該鋁製品的製備方法還包括在化學鍍該Ni-Cu-P合金層之前對鋁基體進行預鍍鎳的步驟,以在鋁基體上形成一化學鍍鎳層。 [11] 如申請專利範圍第10項所述之鋁製品的製備方法,其中所述預鍍鎳採用的鍍液為含以下組分的水溶液:0.020-0.038mol/L NiSO4·6H2O,0.20-0.38mol/L檸檬酸鈉,0.02-0.038mol/L酒石酸鉀鈉,該鍍液的pH值範圍為10-12,溫度為室溫。
类似技术:
公开号 | 公开日 | 专利标题 TWI564432B|2017-01-01|鋁製品及其製備方法 CN103938255A|2014-07-23|一种镍-石墨烯复相的制备方法 CN102936726A|2013-02-20|环氧树脂封装电子元件表面的多层金属化处理方法 CN101826675B|2012-05-09|一种用于连接器壳体的材料及其制备方法 CN101886330B|2012-07-11|Fe-Co磁性合金镀层碳纤维及其制备方法和应用 Chen et al.2008|Deposition of electroless Ni-P/Ni-WP duplex coatings on AZ91D magnesium alloy CN105603397A|2016-05-25|一种磁性金属长纤维管的制备方法 CN106929835A|2017-07-07|化学镀液及采用其对SiC颗粒表面包覆Ni‑P的方法 Guo et al.2012|Influence of nickel ions for electroless Ni–P plating on polyester fabric WO2015092979A1|2015-06-25|銀めっき部材及びその製造方法 WO2015092978A1|2015-06-25|銀めっき部材及びその製造方法 CN104562112A|2015-04-29|一种铅黄铜镀银工艺 CN109355645B|2020-11-10|一种近中性化学镀高W含量Ni-W-P合金镀层的方法 Tang et al.2021|Achieving flexible and durable electromagnetic interference shielding fabric through lightweight and mechanically strong aramid fiber wrapped in highly conductive multilayer metal CN104098277B|2017-02-15|一种在玻璃微珠表面镀铜镀银的方法及镀铜镀银玻璃微珠 Zhang et al.2019|Fabrication and characterization of bio-based shielding material with dissimilar surface resistivity prepared by electroless Ni–Fe–P alloy plating on bamboo | JP2015206122A|2015-11-19|電気Niめっき液 KR101979870B1|2019-05-17|카메라 렌즈용 스페이서 및 그 제조방법 CN104947093A|2015-09-30|一种化学镀镍液及一种化学镀镍的方法和一种线路板及其制造方法 KR101332185B1|2013-11-22|전자파 차폐 필름 Zhu et al.2020|Bio-inspired Fabrication of Cu-Ni Coatings onto Mercerized Flax Fabric by Electroless Plating CN108642532A|2018-10-12|钪添加剂用途及纳米晶Ni-B-Sc镀层的制法与应用 Zhu et al.2018|Cu–Ni–Gd coating with improved corrosion resistance on linen fabric by electroless plating for electromagnetic interference shielding KR101185009B1|2012-09-21|카본나노튜브 금속 복합체 제조방법 KR101260260B1|2013-05-03|통신용 알루미늄 커넥터의 무전해 니켈도금 방법
同族专利:
公开号 | 公开日 US20130149550A1|2013-06-13| US8545992B2|2013-10-01| TWI564432B|2017-01-01| CN103144370B|2016-07-13| CN103144370A|2013-06-12|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题 KR910006018B1|1986-03-19|1991-08-09|미쯔비시 덴끼 가부시끼가이샤|피막용 합금| CN1536100A|2003-04-07|2004-10-13|李 明|环保型化学镀铜镍磷三元合金催化液及其制备方法| CN101204860A|2007-12-12|2008-06-25|山东天诺光电材料有限公司|一种复合金属的铝箔带及制备方法和用途|JP2015053455A|2013-09-09|2015-03-19|株式会社東芝|電力用半導体装置及びその製造方法| CN104123988B|2014-08-14|2016-06-01|国家电网公司|一种具有良好抗疲劳性能的钢芯铝绞线| CN104157374B|2014-08-14|2016-05-04|福州大学|一种表面含Ni-P-植酸非晶镀层的耐腐蚀钢芯铝绞线的制备| CN104339752B|2014-09-19|2016-04-13|中南大学|一种带Ni-Cu-P-TiN复合镀层的防腐抗磨材料及其制备方法| CN109628780B|2019-01-15|2021-01-26|北华大学|一种汽车轻量化铝基复合材料及其制备方法| RU2756620C1|2021-03-05|2021-10-04|Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университет имени Д.И. Менделеева" |Способ химического нанесения покрытия из сплава никель-медь-фосфор|
法律状态:
2021-10-01| MM4A| Annulment or lapse of patent due to non-payment of fees|
优先权:
[返回顶部]
申请号 | 申请日 | 专利标题 CN201110403314.2A|CN103144370B|2011-12-07|2011-12-07|铝制品及其制备方法| 相关专利
Sulfonates, polymers, resist compositions and patterning process
Washing machine
Washing machine
Device for fixture finishing and tension adjusting of membrane
Structure for Equipping Band in a Plane Cathode Ray Tube
Process for preparation of 7 alpha-carboxyl 9, 11-epoxy steroids and intermediates useful therein an
国家/地区
|